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Abstract. In this paper we revisit [13] & [14]’s notion of hedging valuation

adjustment (HVA), originally intended to deal with dynamic hedging frictions,

such as transaction costs, in the direction of model risk. The corresponding
HVA reconciles a global fair valuation model with the local models used by the

different desks of the bank. Model risk and dynamic hedging frictions indeed

deserve a reserve, but a risk-adjusted one, so not only an HVA, but also a
contribution to the KVA of the bank. The orders of magnitude of the effects

involved suggest that local models should not so much be managed via reserves,
as excluded altogether.

1. Introduction.
Cross valuation adjustments (XVAs). The financial landscape has undergone
significant transformation over the past few decades, particularly in the realm of
counterparty risk management. Initially, the focus was on modeling and quanti-
fying counterparty credit risk through credit valuation adjustment (CVA), which
captures the market value of counterparty credit risk by considering potential future
exposures and the likelihood of counterparty default (see e.g. [20]). However, the fi-
nancial crisis of 2008 highlighted severe deficiencies in risk management frameworks,
revealing the complexities of interconnected financial risks.

In the aftermath of the crisis, regulatory bodies implemented more stringent
collateral and capital requirements to address these shortcomings. This led to the
emergence of funding valuation adjustment (FVA, see e.g. [11, 12, 29]) and capital
valuation adjustment (KVA, see e.g. [26], [1]). FVA accounts for the cost of funding
uncollateralized trades, reflecting the funding spreads a financial institution incurs
due to its own default risk. KVA represents the cost of holding capital against
potential future losses, acknowledging the economic impact of regulatory capital
requirements.

These valuation adjustments (XVAs) are complex and nonlinear, requiring ag-
gregation at different levels. CVA can be calculated at the level of individual client
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relationships, considering the entire book of transactions with each counterparty.
FVA and KVA can only be validly assessed at the portfolio level of the entire bank,
encompassing all positions and the interplay of various risk factors across the insti-
tution.
Model risk. In the cost-of-capital XVA approach of [2] and [18], the market is
assumed to be frictionless, and no model risk is envisioned. In line with the Vol-
cker rule that prevents proprietary trading by banks, the market risk is assumed
perfectly hedged, the focus being on credit, funding, and capital risks. However, a
perfect hedging strategy from a wrong model bears material market risk. In this
work, we introduce model risk (paramount in recent structured products crises) and
frictions (found particularly material for cross gamma CVA hedging in [14]) within
a comprehensive XVAs framework. In particular, the present paper provides an
answer to [10], who notes that the baseline cost-of-capital XVA approach “assumes
that the counterparty-free payoffs of the contract are perfectly replicated, rather
than designing the replication strategy from first principles (and ignoring potential
interaction of risk factors)”.

Model risk is traditionally managed by reserving the price difference between
outputs from low and high-quality models. This approach involves adjusting valua-
tions to account for price discrepancies and ensuring that reserves are held against
potential model inaccuracies. However, low-quality models are still used to com-
pute hedging strategies, leading to incorrect hedging ratios relative to higher quality
models.

For discussions on model risk and associated regulatory guidelines until 2014, we
refer to [19] and references therein, including [28], [15], [21], and to [25], who propose
a method to account for model risk in capital requirements related to market risk. [8]
address model risk by considering worst-case pricing and hedging with uncertainty in
a Wasserstein ball around a reference probability measure. However, while the price
is robust, the associated hedge remains imperfect. The model risk specific to XVA
computations is also considered in the literature. [10] and [30] consider parameters
uncertainty. [32, 31] consider uncertainty around a reference probability measure
in the Wasserstein distance, in a discrete time setting, and for a finitely supported
reference measure.

But, in none of the above references is reserve held against the impact of model
risk on hedging strategies. In the present work, we revisit [13] & [14]’s notion
of hedging valuation adjustment (HVA), originally intended to deal with dynamic
hedging frictions, in the direction of model risk. We argue and demonstrate numeri-
cally that the impact of model risk on hedging strategies can be very significant, and
deserves an adequate reserve, considered in addition to pricing adjustments. This
reserve materializes as a contribution to the KVA of the bank. We also consider,
similar to [13] and [14], a reserve against the market frictions induced by the prac-
tical implementation of dynamic hedging strategies. These two reserves, for market
frictions and for the impact of model risk on hedging ratios, can only be computed
at an aggregated level of deals, similarly to CVA, FVA, and KVA computations as
explained above, making an XVA approach natural for this purpose.
Outline of the paper. We work in a continuous time probabilistic setup (Ω,A,F =
(Ft)t∈[0,T ],R) with a finite time horizon T > 0, interpreted as the final maturity of a

bank’s portfolio, assessed on a runoff basis as standard in XVA computations. The
risk-free asset is chosen as the numéraire. Until the concluding section of the paper,
the bank and its counterparties are assumed to be default-free. We assume that all
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deals are European. For an integrable optional process Y = (Yt)t∈[0,T ] starting at

0, interpreted as a cumulative cash-flow process associated with a deal, we define
its value process Y = va(Y) by

Yt = Et [YT − Yt] , t ∈ [0, T ], (1)

where Et is the conditional expectation operator with respect to Ft under the prob-
ability distribution R. Here, R is the hybrid of pricing and physical probability
measures defined in [5, Proposition 4.1], advocated in [2, Remark 2.3] for XVA
computations. In particular, Y + Y is a martingale.

But, our approach considers a dual-model environment: On one side, the global
fair valuation model (or reference model as advocated for model risk assessment in
[7]), in which prices are value processes as per (1); on the other side, local trade-
specific models used by traders. Due to the use of local models, the raw profit-and-
loss process pnl of the bank, defined as the sum of the profit-and-losses associated
with each individual deal and of the friction costs associated with each hedging
set, is not a martingale in the fair valuation model. From an XVA viewpoint, this
deviation from a martingale necessitates a risk-adjusted reserve so that the adjusted
profit-and-loss process of the bank pnl− (HVA−HVA0)− (KVA−KVA0) becomes
a submartingale in line with a remuneration of the shareholders of the bank at
some hurdle rate r (e.g. 10%). Here, HVA is the value process of −pnl so that
L := −pnl + HVA− HVA0 is a martingale, while KVA is the cost of capital, sized
on the fluctuations of L.

Exploiting the linearity of the fair valuation operator, the HVA/KVA compu-
tation can be split at different aggregation levels. This leads to three layers of
valuation adjustments: the first layer, denoted HVAmtm, is computed at the level
of individual deals (i.e. no aggregation). The second layer, denoted HVAf , is com-
puted at the level of hedging sets (i.e. sets of deals that are hedged together), leading

to HVA = HVAmtm + HVAf . The third layer, the KVA, can only be computed at
the level of the bank’s portfolio as a whole. More specifically, we introduce in this
work:

1. The first layer HVA (price adjustment, Section 2): This layer compen-
sates the loss process associated with a deal, ensuring it becomes a martingale
under the global valuation model. This adjustment accounts for the model
risk inherent in transitioning from local models to fair valuation. It corre-
sponds to a model risk reserve as per current market practice, reserving the
local model pricing gaps related to the asset and its static hedging component
(see Proposition 2.9 and Remark 2.10).

2. The second layer HVA (cost of market frictions, Section 3): This
layer addresses nonlinear market frictions induced by the dynamic hedging
strategies associated with individual deals. Deals are hedged collectively to
exploit netting benefits, reducing market frictions such as transaction costs,
though these costs may still be significant. The valuation of these costs con-
stitutes our second HVA layer, generalizing the original HVA defined by [13]
& [14], also accounting for model risk. With these two HVA layers, the bank’s
loss process L is a martingale.

3. The third layer HVA (KVA risk adjustment, Section 4): Despite
the price adjustments from the first two HVA layers, hedging ratios remain
computed within the local models, leading to material losses. The third HVA
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layer is defined as the KVA associated with L. This layer accounts for the cost
of holding capital against exceptional losses induced by the incorrect hedges.

So far, this is all restricted to market risk. The last section of the paper introduces
additional first layer HVA components related to credit and funding risks, thus
incorporating the HVA into the global valuation framework of [2] and [18], and
concludes.

2. First layer HVA: HVA for individual deals.

2.1. Abstract framework. This section introduces our dual-model setup.
For each deal contracted between the bank and a counterparty, the bank uses

a local custom pricing model to price and hedge the deal. This holds up until
a stopping time, at which the trader starts using the fair valuation model (for
instance because the local model is no longer usable as it non longer calibrates to
the market, represented in our setup by the fair valuation model). Under this model
risk specification, the associated raw pnl of the trader is not a martingale, and we
then introduce the first layer HVA as its martingale compensator.

Definition 2.1. We fix a generic European deal of the bank, denoted by “·”, with
maturity T ·. The corresponding raw pnl is given, for all t ≥ 0, by

pnl·t = Q·
t + q·t1{t<τ ·

s} +Q·
t1{t≥τ ·

s} − q·0 −
(
P ·

t + p·t1{t<τ ·
s} + P ·

t1{t≥τ ·
s} − p·0

)
− h·

t, (2)

where

• Q· denotes the cumulative cash flow process received by the bank from the
client through the deal, while P · denotes the cumulative cash flow process
paid by the bank to the hedging market through a static hedging component
(with P · andQ· both assumed stopped at T ·),

• q· (resp. p·) is the price of the deal (resp. of its static hedging component),
computed by the trader of the bank from a local pricing model used for pricing
and hedging the deal until the stopping time τ ·s, denoted model switch time,

• Q· = va(Q·) (resp. P · = va(P ·)) is the fair valuation price of the deal (resp.
of its static hedging component), used by the trader of the bank from time τ ·s
onwards,

• h· is the loss process associated with the dynamic hedging component of the
deal, ignoring friction costs.

Remark 2.2. Because of their nonlinearity across deals, friction costs cannot be
incorporated in the individual deal hedging pnl h·. They can only be addressed at
the aggregated level of “hedging sets” of deals that are hedged together to benefit
from netting effects. Accounting for frictions at the aggregated level is the topic of
Section 3, where their expected cost defines the second layer HVA.

Remark 2.3. As we use the risk-free asset as numéraire and because we assume
hedging instruments given as non-dividend paying European assets, their prices H

are martingales and h·
t =

∫ t

0
ζ ·sdHs, where on {t ≤ τs

·} the ζ ·t are the hedging ratios
computed in the local pricing model (e.g. chosen derivatives of q·t with respect to
Ht, depending on the trader’s hedging stragegy), while on {t > τs

·}, the ζ ·t are the
hedging ratios computed in the fair valuation model (e.g. chosen derivatives of Q·

t

with respect to Ht). The fact that the hedge is, before model switch, computed
in a model or another, as well as the calibration approach for that matter, only
affect the strategy ζ ·. In any case, h· is at least a local martingale (provided ζ · is
predictable and locally bounded, e.g. càglàd adapted).
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Hereafter, we assume true martingality of h· for simplicity, an assumption that
covers the vast majority of the hedges used by traders in practice.

Assumption 2.4. h· is a zero-valued martingale, i.e. va(h·) = 0.

In addition, being value processes of cash flow processes stopped at T ·, the fair
valuations Q· and P · vanish on [T ·,∞). Likewise, a natural assumption on the local
prices as follows.

Assumption 2.5. On {τ ·s > T ·}, the processes q· and p· vanish on [T ·,+∞).

The key observation here is that the raw pnl process pnl· is not a martingale
under the fair valuation model (unless q· = Q· and p· = P ·). We now define the
contribution of a deal and its hedge to the first layer HVA, and, eventually, the first
layer HVA for all deals, by linearity.

Definition 2.6. For each deal “·”, its contribution to the first layer HVA is given
by

HVA· := −va(pnl·), (3)

i.e. (−pnl·+HVA·) is a martingale and HVA· = 0 on [T ·,+∞). The first layer HVA
is defined by

HVAmtm :=
∑

·
HVA· = −va(pnlmtm), (4)

where pnlmtm =
∑

· pnl
·.

Remark 2.7. Without model risk, if the bank was only using the fair valuation
model, then the pnl associated to the deal “·” would simply be the martingale pnl·,∗

defined, for all t ≥ 0, by

pnl·,∗t := Q·
t +Q·

t −Q·
0 −

(
P ·,∗
t + P ·,∗

t − P ·,∗
0

)
− h·,∗

t , (5)

and the associated HVA· would be zero. Note that the processes P ·,∗,P ·,∗, p·,∗, and
h·,∗ are a priori different from P ·, P ·, p·, and h·, as the former would be derived in
the setup of the fair valuation model, while the latter rely on a local pricing model.

Remark 2.8. (i) If the trader is not willing or unable to use the fair valuation
model, the bank may consider liquidating the deal at τ ·s. To render this case, one
just needs to stop the process pnl· at τ ·s.
(ii) One could consider products with knock-out features. In that case, one would
need to introduce an additional stopping time (deactivation time) τ ·e, and to stop
pnl· at τ ·e.
(iii) We could also consider American or game claims with exercise times possibly
< T · under the control of the bank and/or client, in which case τ ·e as above should
be understood as the corresponding exercise time. Further adjustments are then re-
quired to deal with possibly suboptimal stopping by the bank (suboptimal stopping
by the client can be conservatively ignored in the modeling). These adjustments
are the topic of [9]. In the present paper, we assume no early exercise features.

Regarding this first layer HVA, one can perform explicit computations, showing
that it corresponds to the price difference between the two model prices.

Proposition 2.9. Under Assumptions 2.4-2.5, for each deal “·”, we have, for all
t ≥ 0,

HVA·
t = (q·t −Q·

t − (p·t − P ·
t ))1{t<τ ·

s}. (6)
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Proof. From (2), one gets, for all t ≥ 0,

pnl·t = Q·
t +Q·

t + (q·t −Q·
t)1{t<τ ·

s} −
(
P ·
t + P ·

t + (p·t − P ·
t )1{t<τ ·

s}
)
− h·

t.

By linearity of the va(·) operator, since (by definition) Q· + Q·, P · + P ·, and (by
Assumption 2.4) h· are martingales, we obtain from (17)-(3), for all t ≥ 0,

HVA·
t = −Et

[
(q·T · −Q·

T ·)1{T ·<τ ·
s} − (p·T · − P ·

T ·)1{T ·<τ ·
s}
]
+

(q·t −Q·
t)1{t<τ ·

s} − (p·t − P ·
t )1{t<τ ·

s},

which implies (6), asQ·
T · = P ·

T · = 0 and q·T · = p·T · = 0 on {T · < τ ·s}, by Assumption
2.5. □

Remark 2.10. HVA· corresponds to the current market practice for handling model
risk in the form of a reserve put aside at the initial time. In actual practice, rather
than paying q·0 to the client (as implied by (2)) while the client would provide
HVA·

0 as reserve capital to the bank, the trader pays Q·
0 to the client and puts

HVA·
0 in the reserve capital account, which is equivalent (at least if P · = p·, as then

HVA·
0 = q·0 −Q·

0).

2.2. The vulnerable put example.

2.2.1. Financial model. We consider a financial derivative on a stock S, dubbed a
vulnerable put, whereby the bank will obtain the payoff (K−ST )

+1{ST>0} at some
maturity T , for some strike K (with T,K, S ≥ 0). Using the notations introduced
in Definition 2.1, we have

T · = T,Q·
t = (K − ST )

+1{ST>0}1t≥T .

With dividend yields on S and interest rates in the economy set to 0, we assume
the global valuation model defined as the jump-to-ruin (jr) model

dSt = λStdt+ σStdWt − St−dNt = σStdWt − St−dMt, t ≥ 0, (7)

for some standard Brownian motion W , a constant volatility parameter σ > 0, and
M = N −λt, where N is a Poisson process of intensity λ > 0. So the stock S jumps
to 0 at the first jump time θ of the driving Poisson process N . Hence, for t ≥ 0,

Q·
t = va(Q·)t = Qjr

t := Et

[
(K − ST )

+1{T<θ}
]
1{t<T}. (8)

The role of the local pricing model will be played by a Black-Scholes (bs) model
with volatility parameter Σ continuously recalibrated to the jump-to-ruin price

P jr
t := Et

[
(K − ST )

+
]
1{t<T}, t ≥ 0 (9)

of the “vanilla component” of the vulnerable put, with payoff (K − ST )
+ at time

T . So, Σ is a Black-Scholes implied volatility in the sense of Definition A.1. The
vulnerability of the vulnerable put is immaterial in this bs model, hence the local
model price q·t of the vulnerable put coincides with the vanilla put price P jr

t . We
also define τ ·s := θ. Indeed, an application of the formula (49) for S = 0 and
−d± = +∞ shows that P jr = K on [θ, θ ∧ T [. As detailed in Remark A.1, at time
θ (if < T ), the implied volatility of the vanilla put ceases to be well-defined, hence
the local pricing model cannot be used anymore.

Remark 2.11. In this example, which is devised for the sake of analytical tractabil-
ity, the trader is short an extreme (default) event but pretends he does not see
it, only hedging market risk. This could be for competitiveness purposes: the
client selling the vulnerable put might consider different banks as a venue for his
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deal, looking for a high premium. Our trader, buying the vulnerable put at the
(higher) price of the vanilla one, offers a more competitive price. But, his ac-
cordingly hedged position is still short the default event, which can be seen as
an extreme case of “gamma negative” exposure. The (Darwinian, as per [3])
model risk mechanism here at hand is essentially the same as the one affect-
ing huge amounts of structured derivative products, including range accruals in
the fixed-income world, autocallables and cliquets on equities, or power-reversal
dual currency options and target redemption forwards on foreign-exchange: cf.
https://www.risk.net/derivatives/6556166/remembering-the-range-accrual-bloodbath (11
April 2019, last accessed on 19 June 2024). Risk.net thus reported in Q4 of 2019
that a $70bn notional of range accrual had to be unwound at very large losses by
the industry.

2.2.2. First layer HVA for a static hedging scheme. We first consider a static hedg-
ing scheme. The trader uses at time t = 0 the local (bs) pricing model, in which
the vulnerability of the put is immaterial: from the bs model viewpoint, shorting
the vanilla put is a perfect hedge to the vulnerable put and no dynamic hedging is
required. In the notation of Definition 2.1, this corresponds, for all t ≥ 0, to h·

t ≡ 0
and

P ·
t = (K − ST )

+1t≥T ,

p·t = P ·
t = va(P ·)t = P jr

t as per (9).
(10)

The equality p· = P · implies that the local pricing model is continuously recalibrated
(before the ruin time θ) to the vanilla put fair valuation P jr, as explained after (9).

Applying (2) and (6), we compute, for all t ≥ 0,

pnl·t = −K1{θ≤t}1{θ≤T},

HVA·
t = 1{t<θ}

(
P jr
t −Qjr

t

)
= JθK(1− e−λ(T−t)),

(11)

where, to compute pnl·, we used that Q·
t − P ·

t = −K1{θ≤T≤t}, p·t = q·t = P jr
t on

{t < θ}, and Q·
t = 0, P ·

t = K on {θ ≤ t < T}. The raw pnl process in (11) and the
corresponding compensated (by HVA· −HVA·

0) pnl satisfy, for t ≥ 0,

dpnl·t = −K1{t≤T}δθ(dt) = 1{t≤θ∧T}
(
− λKdt− (KdNt − λKdt)

)

dpnl·t − dHVA·
t = K1{t≤θ∧T}e

−λ(T−t)
(
λdt− δθ(dt)

)
,

(12)

where δθ denotes the Dirac measure at time θ.

Remark 2.12. Consistent with the qualitative features of Darwinian model risk
in [3], the seemingly positive drift 1{t≤θ∧T}λKe−λ(T−t)dt in the second line is only

the compensator of the loss −1{t≤θ∧T}Ke−λ(T−t)dNt that hits the bank in case the
jump-to-ruin event materializes. Hence, the trader makes systematic profits in the
short to medium term, followed by a large loss at the model switch time.

Numerical application. For λ = 1%, T = 10y, and K = 1, (11) yields

HVA·
0 = K(1− e−0.1) ≈ 0.095. (13)

2.2.3. First layer HVA for a dynamic hedging scheme. We now consider a dynamic
delta hedging scheme. The trader delta hedges the vulnerable put with the stock
S and the risk-free asset, He does so in his local bs pricing model until time θ, and
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there is no static hedging. In the notation of Definition 2.1, we have, for all t ≥ 0,

P ·
t = P ·

t = p·t ≡ 0 and h·
t =

∫ t∧θ

0

∆bs
s−dSs, (14)

where ∆bs
t = N

(
− d−(t, St; 0,Σt)

)
, in which N is the standard normal cumulative

distribution function, is the delta of the vulnerable put computed in the local pricing
model: cf. the Black-Scholes formula for puts and (43). Note that, in this setting,
dynamic hedging friction costs could be considered, namely transaction costs, which
will be done in Section 3.5.

From (2) and (6), we compute, for t ≥ 0,

pnl·t = 1{θ>T}1{t≥T}(K − ST )
+ + 1{t<θ}P

jr
t − P jr

0 − h·
t,

HVA·
t = 1{t<θ}(P

jr
t −Qjr

t ) = 1{t<θ}K(1− e−λ(T−t)).
(15)

The raw pnl· in (15) satisfies, for 0 ≤ t < θ,

dpnl·t = δT (dt)(K − ST )
+ + dP jr

t − δtdSt,

whereas at θ (if ≤ T ), the bank incurs a loss

pnl·θ − pnl·θ− = −P jr
θ− + h·

θ− − h·
θ = −P bs

θ− +∆bs
θ−(Sθ− − Sθ)

= −P bs
θ− +∆bs

θ−Sθ− = −KN (−d−(θ, Sθ−; 0,Σθ−)) < 0,
(16)

where P bs
t is the price of the vanilla put with strike K and maturity T in the Black-

Scholes model with implied volatility Σt as per Definition A.1 (or equivalently, by
definition of Σt, in the fair valuation model).
Numerical application. In the above example, while the static hedge is perfect
before θ and the continuous-time delta hedge is not (due to the continuous recali-
bration of the local pricing model), one observes a smaller loss at θ < T in the delta
hedging case:

P jr
θ− −∆bs

θ−Sθ− = KN (−d−(θ, Sθ−; 0,Σθ−)) ≤ K = P bs
θ ,

cf. (16), the first identity in (12), and the left panel in Figure 1.

Remark 2.13. The statically hedged position is delta and vega neutral. Hence, our
vulnerable put example yields a case where delta-vega hedging the option actually
increases model risk with respect to delta-hedging it only.

3. Second layer HVA: HVA for dynamic hedging frictions.

3.1. Abstract framework. As already hinted in Remark 2.2, the above processes
h· are meant for standard dynamic hedging cash flows ignoring frictions such as
transaction costs. Indeed, as these are nonlinear, they can only be addressed at the
level of a hedging set “⋆”, i.e. a book of contracts that are hedged together. In this
section, we consider the cost associated with the dynamic hedging frictions, assessed
at the level of each hedging set “⋆”, leading to a corresponding contribution to the
second layer HVA. We then define by linearity the second layer HVA considering
all the hedging sets.

Definition 3.1. For each hedging set “⋆”, we consider its associated dynamic
hedging frictions process f⋆. The corresponding contribution to the second layer
HVA is given by

HVA⋆ = va(f⋆), (17)
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Figure 1. Vulnerable put example: [left] the red histogram is
the density of −pnl·1 +HVA·

1 −HVA·
0 conditional on model switch

occurring before time 1, i.e. on {0 < θ ≤ 1}, for delta hedging
(without frictions at this stage). The vertical blue line corresponds
to the deterministic loss −pnl·1 + HVA·

1 − HVA·
0 = K + HVA·

1 −
HVA·

0 for static hedging, also conditional on {0 < θ ≤ 1}. The
numerical parameters are as above (13). Note that, in both cases,
HVA·

1 −HVA·
0 = 0−K(1− e−λT ) ≃ −0.095 holds on {0 < θ ≤ 1}.

[right] Monte-Carlo approximation of HVA·
0 and HVA⋆

0.

i.e. (f⋆ +HVA⋆) is a martingale and HVA⋆ = 0 on [T ,+∞).
The second layer HVA of the bank is defined by

HVAf :=
∑

⋆

HVA⋆ = va(f), (18)

where f =
∑

⋆ f
⋆.

A specification of the friction process f⋆ associated with the hedging set ”⋆” is
necessary to compute the associated HVA⋆ for frictions. Hereafter, we derive such
a specification by passage to the continuous-time limit starting from a classical
discrete-time specification. This sheds more rigor in the seminal contribution of
[13], who derives a PDE for the transaction costs at the limit, while only rebalancing
when the delta of the underlying portfolio is shifted by a fixed and constant threshold
D > 0 (so it seems that [13]’s limiting HVA should increase at discrete rebalancing
times only, rather than being given by a PDE). Our approach also allows computing
HVA⋆ numerically in a model risk setup accounting for the impact of recalibration
on transaction costs, which is not considered in [13].

3.2. Fair valuation setup. In this section, we work in the setup of the following
fair valuation model X = (X, J) (stated under the probability measure R):

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dJt =

L∑

ȷ=1

(ȷ− Jt−)dν
ȷ
t , λ

ȷ
t = λȷ(t,Xt−),

(19)

where W is a multivariate Brownian motion and νȷt is the number of transitions
of the “Markov chain-like” component J to the state ȷ on (0, t], with compensated
martingale dνȷt − λȷ

tdt of ν
ȷ. Jumps could also be introduced in X, but we refrain

from doing so for notational simplicity. This setup encompasses the jr fair valuation
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model in our vulnerable put example. It also includes XVA models, with room for
client default indicator processes in the J components of X , as required in view of
our extension of the setup in the concluding section of the paper.

We assume that the function-coefficients µ, σ, λ are continuous maps such that the
above-model is well-posed, referring to [17, Proposition 12.3.7] for a set of explicit
assumptions ensuring it. In particular, we have the following assumption.

Assumption 3.2. (i) The maps λȷ, 1 ≤ ȷ ≤ L, are bounded by a constant Λ ≥ 0.
(ii) The map (t, x, ȷ) 7→ (µ, σ)(t, x, ȷ) is Lipschitz in x ∈ Rd, uniformly in (t, ȷ), and
the map (t, ȷ) 7→ (µ, σ)(t, 0, ȷ) is bounded.

Hence, (see e.g. [22, (II.83) page 123]) there exists a constant C1 ≥ 0 such that

E
[
|Xt −Xs|2

] 1
2 ≤ C1(t− s)

1
2 . (20)

In addition, for all 1 ≤ l ≤ d,

Cl := sup
t∈[0,T ]

E
[
(X l

t)
2
] 1

2 < +∞. (21)

3.3. Transaction costs for discrete rebalancing. We assume that a trader
values a hedging set “⋆” as q⋆t = q⋆(t,Xt) for some smooth map q⋆, and that the
trader delta-hedges its position with respect to the d-dimensional risky asset X,
discretely at the times of the uniform grid (ih)0≤i≤n with h = T⋆

n for some n ≥ 1,

where T ⋆ ≤ T is the final maturity of this hedging set.

Remark 3.1. More generally, one can consider delta-hedging only with respect to
some components of X. It is actually what we will do in Section 3.5 while delta-
hedging in the Black-Scholes model with respect to S̃ only in X = (S̃,Σ;1[0,θ))
there (see (42) and (27)). The extension is straightforward, as it is (at least for our
purpose) equivalent to considering no transaction costs for those non-delta-hedged
assets, i.e. setting the corresponding diagonal entries of k to 0 below.

We work in a setting similar to [27, Chapter 1, Section 2], with proportional

transaction costs scaled to the rebalancing time by a factor
√
h, where h is the time

interval between two rebalancing dates.

Remark 3.2. In their case, scaling proportional transactions costs by hα, with
α ∈ (0, 1

2 ], allows showing, in the Black-Scholes model, that perfect replication of a
vanilla call can be achieved in the limit as the number of rebalancing dates goes to
infinityby delta-hedging the portfolio’s value computed with a modified volatility.
In our case, scaling the transaction costs by

√
h allows passing to the continuous

time limit and deriving the dynamics of the transaction costs and the PDE for the
HVA⋆ with trading indeed occurring continuously, and not only along a sequence
of stopping times as in [13].

Abbreviating ∂xl
into ∂l, let at =

(
alt
)
1≤l≤d

with alt = ∂lq
⋆(t,Xt), 0 ≤ t ≤

T ⋆, 1 ≤ l ≤ d.

Assumption 3.3. The cost to rebalance the hedging portfolio from a =
(
al
)
1≤l≤d

at time t into a+ δa = (al + δal)1≤l≤d at time t+h is X⊤
t+hδa+

1
2X

⊤
t+hk(δa)

abs
√
h,

where (δa)abs := (|δal|, 1 ≤ l ≤ d) and k := diag(kl, 1 ≤ l ≤ d) for some constants
kl ≥ 0, 1 ≤ l ≤ d.
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The transaction costs are thus proportional to the risky asset prices (measured in
units of the risk-free numéraire asset). In the context of proportional transaction
costs, Assumption 3.3 is classical [27, page 8].

Remark 3.3. Unless there is no Markov-chain-like component J in X , the replica-
tion hedging ratios in setups such as (19) also involve finite differences (as opposed
to partial derivatives only in the above): see e.g. Proposition A.4. However, practi-
tioners typically only use partial derivatives as their hedging ratios, motivating the
present framework, which encompasses in particular the use-case of Section 4.4.

The discrete-time hedging valuation adjustment for frictions (HVAh) is then a
process compensating the bank (on average) for these transaction costs.

Definition 3.4. The HVA for frictions associated to discrete hedging along the
time-grid (ih)0≤i≤n is defined as the (nonnegative) process HVAh such that HVAh

nh =
0 and, for 0 ≤ i < n,

HVAh
ih = Eih

[
fh
nh − fh

ih

]
=

Eih

[
fh
(i+1)h − fh

ih +HVAh
(i+1)h

]
= Eih

[
φh
(i+1)h +HVAh

(i+1)h

]
,

(22)

where fh
ih =

∑i
u=0 φ

h
uh, with

φh
ih =

√
h

2
X⊤

ihk(δaih)
abs, 0 < i < n, φh

0 = φh
nh = 0,

and (δaih)
abs = (|alih − al(i−1)h|, 1 ≤ l ≤ d).

Remark 3.4. We neglect the transaction costs at time t = 0, given by (assuming

d = 1 for simplicity)
√
hk
2X0|a0 − a0−| (where a0− is the initial quantity of risky

asset possessed before entering the deal), and at time t = T ⋆ = nh, given by√
hk
2XT⋆ |a(n−1)h| (to liquidate the hedging portfolio).

3.4. Transaction Costs in the Continuous-Time Rebalancing Limit. The
results of this part specify the cumulative friction costs f⋆ and the ensuing HVA⋆

that arise in the above setup when the rebalancing frequency of the hedge goes to
infinity, i.e. when h → 0.

Definition 3.5. For all t ∈ [0, T ⋆], let φt := φ(t,Xt) with, for all (t, x, ȷ) ∈ [0, T ⋆]×
Rd × {1, · · · , L},

φ(t, x, ȷ) =
1√
2π

x⊤k(Γσ)abs(t, x, ȷ), (23)

where (Γσ)abs := (|∂x(∂lq⋆)σ|, 1 ≤ l ≤ d). Then, let f⋆
t =

∫ t

0
φsds and

HVA⋆
t = va(f⋆)t = Et

[∫ T⋆

t

φsds

]
. (24)

Note that the map HVA⋆ defined by HVA⋆(t, x, ȷ) := E [HVA⋆
t | Xt = (x, k)] solves

the PDE

HVA⋆(T ⋆, ·) = 0 on R× {1, . . . , L},
(∂t + G)HVA⋆ + φ = 0 on [0, T ⋆)× R× {1, . . . , L},

(25)

where we denote for any smooth map u = u(t, x, ȷ), Gu = Fu+
∑L

ȷ=1 (u(·, ȷ)− u)λk,

with Fu := ∂tu+∂xuµ+
1
2 tr
[
σσ⊤∂2

x2u
]
, in which ∂x is the row-gradient with respect

to x, ∂2
x2 the Hessian matrix with respect to x, and tr is the trace operator.
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We make the following technical hypotheses on the local valuation map q⋆.

Assumption 3.6. (i) There exists 0 < α < 1
2 such that, for all 1 ≤ l ≤ d and

1 ≤ ȷ ≤ L, the maps (t, x) 7→ ∂lq
⋆(t, x, ȷ) and (t, x) 7→ (∂x(∂lq

⋆))σ(t, x, ȷ) are α-
Hölder continuous in t and Lipschitz continuous in x;
(ii) There exists C2 > 0 such that, for any u ∈ {∂lq⋆, ∂x(∂lq⋆)σ | 1 ≤ l ≤ d},

sup
(t,x,ȷ,j)

|u(t, x, ȷ)− u(t, x, j)| ≤ C2 < ∞;

(iii) supt∈[0,T⋆] E
[
|(∂t + F)(∂lq

⋆)(t,Xt)|2
] 1

2 ≤ C2 < ∞, 1 ≤ l ≤ d.

Theorem 3.5. We set HVAh
t := HVAh

⌊ t
h ⌋h, 0 ≤ t ≤ T ⋆. Under Assumptions 3.2,

3.3, and 3.6, we have (almost surely)

HVAh
t −−−→

h→0
HVA⋆

t , 0 ≤ t ≤ T ⋆.

Remark 3.6. In discrete time, the transaction costs are proportional to the square
root of the time interval between two rebalancing dates. This scaling is the only one
that passes to the continuous time limit as our PDE (25). In particular, the proof of
Theorem 3.5 breaks down under transaction costs scaled with any power β ∈ (0, 1

2 ).
The derivation of a limiting PDE under more general scaling assumptions is left for
further research.

Proof. See Section B.

Note that (24) would be virtually impossible to implement without the connection

to HVAh provided by the underlying discrete setup: transaction costs with model
risk are a case where the approximation to a limiting problem in continuous time
is problematic unless one knows where the limiting problem is coming from in the
first (discrete) place. But, Theorem 3.5 is interesting from a theoretical viewpoint
and important in practice to guarantee the meaningfulness (stability for small h) of

the numbers HVAh
t to be computed numerically based on (22).

3.5. HVAf for the vulnerable put under the delta hedging scheme. Contin-
uing in the setup of Sections 2.2.1 and 2.2.3, regarding frictions, we assume (unre-
alistically but with some genericity as explained in Remark 2.11) the bank portfolio
reduced to the vulnerable put and its dynamic delta-hedge in S (with T ⋆ = T in

particular). We are thus in the setup of Section 3.4 with X = (S̃,Σ;1[0,θ)) and

q⋆t = P bs(t, S̃t; Σ). Here, S̃ is the auxiliary Black-Scholes model (42) (which satis-

fies S̃t = St− on {t ≤ θ}), Σ is the Black-Scholes implied volatility of the vanilla

put as per Definition A.1, and P bs(t, S̃t; Σ) is the pricing function of the vanilla put
with strike K and maturity T in the Black-Scholes model with zero interest rates
and volatility Σ (cf. (51)), with associated hedge ratio 1{t≤θ}∆bs

t− for the vulnerable

put, where ∆bs
t = ∂SP

bs(t, S̃t; Σt).

Corollary 3.7. Assume that trading is permitted only at the discrete dates ih,
1 ≤ i ≤ n, with h = T

n (for any n ≥ 1). Assume further that implementing the
delta hedging strategy triggers a cumulative cost at time ih induced by propor-
tional transaction costs, and hence a discrete-time hedging valuation adjustment
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for frictions, respectively given by, for 0 ≤ i ≤ n,

fh
ih :=

i∑

j=1

k

√
h

2
Sjh

∣∣∣1{jh≤θ}∆
bs
jh− − 1{(j−1)h≤θ}∆

bs
(j−1)h−

∣∣∣ ,

HVAh
ih := Eih

[
fh
nh − fh

ih

]
.

(26)

Then, as h goes to 0, the discrete HVA for frictions HVAh
⌊ t
h ⌋h converges almost

surely to HVAf = va(f) on [0, T ], for the process f such that

dft = 1{t≤θ}
k√
2π

St

∣∣σΓbs
t− + ςt∂

2
Σ,SP

bs(t, St−; Σt−)
∣∣ dt, (27)

where Γbs
t = ∂2

S2P bs(t, St; Σt) ≥ 0, while ς is the diffusion coefficient of the implied
volatility process Σ.

Proof. By application of Theorem 3.5 (cf. (23)) with X = (S̃,Σ;1[0,θ)) and k1 =
k ≥ 0, k2 = 0 (as the position is not ”delta-hedged” with respect to Σ in the jr
model, see Remark 3.1). □

Interestingly, the cost of delta-hedging in the bs model computed within the jr model
also depends on the derivative of the delta with respect to the implicit volatility,
or implied “vanna”, ∂2

Σ,SP
bs. This comes from the continuous recalibration of the

trader’s model to the fair valuation of the vanilla put. Because of this impact of
recalibration into transaction costs, (27) would be quite demanding to implement
directly, whereas its discrete counterpart (26) is rather straightforward (the consis-
tency between the two being insured by Corollary 3.7).
Numerical application. The numerical parameters are the same as above (13),
along with S0 = K = 1 and σ = 0.3, and with k = 0.1 in (27). We perform

Monte-Carlo simulations with M = 50, 000 paths to estimate HVAh
0 = E

[
fh
nh

]
as

per (22)-(26) for a monthly time-discretization, i.e. n = 120 and h = T
n = 1

12 . As
a sanity check, we also price by Monte Carlo HVA·

0 already known from (15) and
(13). We can see from the right panel in Figure 1, where the horizontal red line

corresponds to HVA·
0 = 1− e−0.1, that HVA·

0 dominates HVAf
0 .

4. Third layer HVA: Risk-adjustment.

4.1. Abstract framework. After compensation by the first layer HVA, the price
is right (cf. Remark 2.10), but the hedge is still wrong (as, for each deal “·”, before
τ ·s the hedging ratios are computed using the local pricing model and not the fair
valuation one). Under a cost-of-capital valuation approach, the reserve for model
risk and dynamic hedging frictions would not reduce to the first and second layers
HVA, but this reserve should also be risk-adjusted. This leads to the third layer
HVA that we introduce in this section.

Accounting for raw pnls, hedging frictions, and their associated HVA compen-
sators (first and second layers HVA), we obtain the overall trading loss of the bank
given as the martingale L defined by, for all t ≥ 0,

Lt = pnlt +HVAt −HVA0

= −pnlmtm
t +HVAmtm

t −HVAmtm
0 + ft +HVAf

t −HVAf
0 ,

(28)

with pnl := −pnlmtm + f and HVA := HVAmtm +HVAf .
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The reserves for model risk and dynamic hedging frictions will now be risk-
adjusted. Namely, the volatile swings of L due to model risk and transaction costs
should be reflected in the economic capital and the cost of capital of the bank.
The corresponding theory now proceeds as in [2] and [18]. The regulator expects
that some capital, no less than a theoretical economic capital (EC) level, should be
reserved to cover the exceptional (i.e. beyond average, which is in fact zero, thanks
to the first two HVA layers) losses over the next year. Namely, we have the following
definition.

Definition 4.1. The economic capital (EC) of the bank is defined as the time-
t conditional expected shortfall (ESt) of the random variable (Lt′ − Lt) at some
confidence level α ∈ ( 12 , 1), where L is the trading loss process of the bank and

t′ = (t+ 1) ∧ T , i.e.

ECt = ESt(Lt′ − Lt) :=
Et

(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)

Et1{Lt′−Lt≥VaRt(Lt′−Lt)}
, (29)

in which VaRt denotes the time-t conditional value-at-risk of level α.

The capital valuation adjustment (KVA) is then defined as the level of a risk
margin required for remunerating the shareholders of the bank dynamically at a
constant and nonnegative hurdle rate r ≥ 0 of their capital at risk. Since the KVA,
which is paid by the clients of the bank, is also loss-absorbing (as a risk margin), it is
part of capital at risk. Hence the latter is given by max(EC,KVA), while shareholder
capital at risk only corresponds to SCR = max(EC,KVA)−KVA) = (EC−KVA)+.
Accordingly, we get the following definition.

Definition 4.2. The third layer HVA is defined as the capital valuation adjustment
(KVA), itself defined by the inductive relation

KVAt := rEt

∫ T

t

(
ECs −KVAs

)+
ds, t ≤ T . (30)

Equivalently, the KVA process vanishes at T and turns the cumulative dividend
process −(L+KVA−KVA0) of the bank shareholders into a submartingale with drift
coefficient r × SCR. By standard Lipschitz BSDE results, assuming EC is square
integrable, (30) defines a unique square integrable KVA process [18, Proposition
B.1].

4.2. Additional valuation adjustment. We propose to compare the valuation
adjustments (first, second, and third layer HVAs summing up to HVAmtm+HVAf+
KVA as per (4)-(18)-(30)) to what would be obtained if the bank was only us-
ing the fair valuation model. The difference is what we call additional valua-
tion adjustment (AVA, or model risk component thereof, cf. [23], [24] and see also
https://www.eba.europa.eu/regulation-and-policy/market-risk/draft-regulatory-
technical-standards-on-prudent-valuation).

As already noticed in Remark 2.7, if there was no model risk, i.e. if the bank
was using the fair valuation model for all its purposes, then HVAmtm would be
identically zero. The first and second layer HVAs would thus reduce to a second
layer HVA à la [13] and [14], as detailed in Section 3 (but without model risk),
still triggering a third layer HVA (KVA) as per Section 4.1. Moreover, using the
fair valuation model for all purposes by the bank would also imply different and
presumably much better hedges, triggering much less volatile swings of L than the
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ones implied by local models, hence in turn much lower economic capital and KVA.
One would then obtain a baseline (∗) HVAf,∗+KVA∗ defined by equations (18)-

(30), but for pnl· defined by (5) instead of (2), and where HVAf,∗ is the second
layer HVA associated with the dynamic hedging strategies leading to h·,∗ in (5). An
additional valuation adjustment (AVA) could thus be defined as the difference

AVA = HVAmtm +HVAf +KVA− (HVAf,∗ +KVA∗). (31)

As a dealer bank should not do proprietary trading, the reference hedging case is
when pnl·,∗ ≡ 0 in (5). In that situation, the overall trading loss of the bank is the
minimalistic (compare with (28))

L∗ = f∗ +HVAf,∗, (32)

which could be taken as a reference for defining EC∗ and KVA∗ via (29)-(30) and in
turn the AVA via (31). After the introduction of the HVA and its risk adjustment in
the KVA, the use of bad quality local models should imply a positive AVA in (31).
Better models would imply a smaller AVA, hence an increased competitiveness for
the bank. Our AVA thus provides a measure of the shortfall for a bank, in terms of
additional KVA costs, by not using better models. Computing it could virtuously
incite banks to use higher quality models. For that, however, there is no economic
necessity for a bank of computing a baseline HVAf,∗+KVA∗, nor of identifying the
corresponding AVA. All that matters economically is that the bank passes to its
clients the total add-on HVAmtm + HVAf + KVA = (HVAf,∗ + KVA∗) + AVA, by

(31) (so HVAmtm +HVAf +KVA encompasses HVAf,∗ +KVA∗ and the AVA).

We now derive the KVA (30) associated with the two hedging schemes of the
vulnerable put in Section 2.2 to come on top of HVA· computed in Section 2.2.2
for the static hedging scheme and of HVA· and HVA⋆ computed in Sections 2.2.3
and 3.5 for the delta hedging scheme. These computations are done under the
assumption that the bank portfolio would solely consist of the vulnerable put and
its hedge, but this (even though unrealistic) situation has also some genericity as
explained in Remark 2.11.

4.3. KVA for the vulnerable put under the static hedging scheme. Re-
garding the static hedging scheme of Section 2.2.2, one can derive explicit EC and
KVA formulasas follows.

Proposition 4.1. Denoting Θ = (T + ln(α)
λ )+ ≤ T , where α is the confidence level

at which economic capital is calculated, and by r the hurdle rate of the bank, we

have, for all t ≥ 0, ECt = 1{t<θ}ẼCt, and KVA = 1{t<θ}K̃VAt, where

ẼCt = 1λ>− ln(α)1{t<Θ}Ke−λ(T−t),

K̃VAt = 1λ>− ln(α)Ke−λ(T−t)1{t<Θ}(1− e−r(Θ−t)),

KVA0 = 1λ>− ln(α)Ke−λT1Θ>0(1− e−rΘ).

(33)
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Proof. For t < t′ ≤ T , (28) and the last line in (11) yield

Lt′ − Lt

= (−pnl· +HVA·)t′ − (−pnl· +HVA·)t

= 1{t′≥θ>t}K + 1{t′<θ}K(1− e−λ(T−t′))− 1{t<θ}K(1− e−λ(T−t))

= 1{t<θ}
(
1{t′≥θ}(K −K(1− e−λ(T−t′))) +K(1− e−λ(T−t′))−K(1− e−λ(T−t))

)

= 1{t<θ}B
t
t′ , where Bt

t′ = 1{t′≥θ}Ke−λ(T−t′) +K(e−λ(T−t) − e−λ(T−t′)).

On {t < θ}, the Bernoulli random variable 1{t′≥θ} satisfies Et

[
1{t′≥θ} = 0

]
=

e−λ(t′−t) and, for any confidence level α > e−λ(t′−t), i.e. such that t′ − t > − ln(α)
λ ,

VaRt(Lt′ − Lt) is the largest of the two possible values of (Lt′ − Lt), so that the

latter never exceeds VaRt(Lt′ −Lt). As a consequence, for t′ − t > − ln(α)
λ , we have

by (29)

ESt(Lt′ − Lt) = VaRt(Lt′ − Lt) =

1{t<θ}
(
Ke−λ(T−t′) +K(eλ(T−t) − e−λ(T−t′))

)
= 1{t<θ}Ke−λ(T−t).

For t′ − t ≤ − ln(α)
λ , we have

(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)} = Lt′ − Lt,

which is a time-t conditionally centered random variable as the increment of the
martingale L. Hence,

0 = Et(Lt′ − Lt) = Et

(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)
= ESt(Lt′ − Lt).

Setting t′ = (t + 1) ∧ T as prescribed in (29) (for T = T here) so that t′ − t >
− ln(α)

λ ⇔ t < Θ, by Definition 4.1 we obtain

ECt = ESt(Lt′ − Lt) = 1{t<θ}1λ>−ln(α)1t<ΘKe−λ(T−t),

which is the first line in (33).
Assuming λ > − ln(α) (otherwise EC = KVA = 0), let us define the process

KVA†
t := rEt

∫ T

t

e−r(u−t)ECudu = rEt

∫ T

t

(
ECs −KVA†

s

)
ds, t ≤ T. (34)

We have

KVA†
t = rKEt1{t<Θ}

∫ Θ

t

e−r(u−t)1{u<θ}e
−λ(T−u)du

= rKe−λ(T−Θ)1{t<Θ}1{t<θ}

∫ Θ

t

e−r(u−t)e−λ(u−t)e−λ(Θ−u)du

= 1{t<θ}rKe−λ(T−Θ)e−λ(Θ−t)1{t<Θ}

∫ Θ

t

e−r(u−t)du

= 1{t<θ}Ke−λ(T−t)1t<Θ(1− e−r(Θ−t)) ≤ 1{t<θ}K1t<Θe
−λ(T−t) = ECt.

(35)

Back to the right-hand side in (34), the process KVA† therefore satisfies

KVA†
t = rEt

∫ T

t

(
ECs −KVA†

s

)
ds = rEt

∫ T

t

(
ECs −KVA†

s

)+
ds, t ≤ T, (36)

which is the KVA equation (30). As EC and KVA† are bounded processes, by the

result recalled after Definition 4.2, KVA† is the unique bounded (or even square
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integrable) solution to this equation, i.e. KVA† = KVA. The first identity in the
last line of (35) then yields the second line in (33). □

For a baseline (*) setup (cf. Section 4.2) corresponding to dynamic, assumed
frictionless, replication of the vulnerable put by the stock and the vanilla put in the
jr model as per Proposition A.4, we have HVAf,∗ +KVA∗ = 0, and hence the AVA
(31) reduces to HVA· +KVA.
Numerical application. For λ = 1%, T = 10y, and r = 10%, (33) and (11) yield,
as α ↓ e−0.01 ≈ 99%,

KVA0 ↓ Ke−0.1(1− e−1+0.1) ≈ 0.54K

KVA0

HVA·
0

↓ (1− e−0.9)

(e0.1 − 1)
≈ 5.64.

(37)

In the present case where f = 0 and a pure frictionless HVAf à la [13] and [14]
vanishes, playing with the jump-to-ruin intensity λ in Figure 2, we see from the top
panels that the first layer HVA alone can be extreme. As visible on the bottom
panels of Figure 2, the corresponding KVA adjustment can be even several times
larger. The latter holds for α > e−λ. For α ≤ e−λ, instead, there is no tail risk at
the envisioned confidence level, hence EC = KVA = 0.

Figure 2. At-the-money S0 = K, denoting MtM0 = Qjr
0 and

assuming α ↓ e−λ everywhere in the bottom panels (where the
limiting value of the confidence level α that underlies the KVA
therefore depends of the abscissa λ): [top left] MtM0

K ; [top right]
HVA·

0

MtM0
; [bottom left] KVA0

HVA·
0
; [bottom right] AVA0

MtM0
.
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4.4. KVA for the vulnerable put under the dynamic hedging scheme. In
the dynamic hedging case of Section 2.2.3, we rely on numerical approximations
to estimate the economic capital and the KVA of the bank at a quantile level α
set in the numerics to 99%. In fact, in this Markovian framework, each process
Z = HVAf ,EC,VaR·(L·′ − L·), and KVA satisfies, for all t ≥ 0,

Zt = Z̃(t, St) = 1{t<θ}Z̃(t, S̃t),

where S̃ is the auxiliary Black-Scholes model (42) and H̃VAf (t, 0) = ṼaR(t, 0) =

ẼC(t, 0) = K̃VA(t, 0) = 0, while, for all (t, S) ∈ [0, T ]×(0,∞), setting t′ = (t+1)∧T ,

H̃VAf (t, S) = E [fT − ft |St = S] ,

ṼaR(t, S) = VaR [Lt′ − Lt |St = S] ,

ẼC(t, S) = ES [Lt′ − Lt |St = S] ,

K̃VA(t, S) = rE

[∫ T

t

(ECu −KVAu)
+
du

∣∣∣∣∣St = S

]
.

(38)

On this basis, one can obtain approximations ĤVAf , ÊC, and K̂VA of the HVAf ,
EC, and KVA processes at all nodes of a forward simulated grid (Sm

tk
)1≤m≤M
0≤k≤10 of S

by neural net regressions and quantile regressions that are used backward in time
for solving the above equations numerically, as detailed in Section C.

Numerical application. We plot on Figure 3 the processes ÊC(·, S̃·) and K̂VA(·, S̃·)
represented by the term structures of their means (in green) and quantiles of levels
10%, 90% (in blue) and 2.5%, 97.5% (in red), both with and without friction f , as
well as in the (deterministic) static hedging case (33). In particular, we obtain in
the dynamic hedging case for the same numerical parameters as the ones used in
Section 3.5, a confidence level α for the EC computations set at 99%, and a hurdle
rate r for the KVA computations set at 10%:

ĤVA·
0 ≃ 0.095 and ĤVAf

0 ≃ 0.046, hence ĤVA0 = ĤVA·
0 + ĤVAf

0 ≃ 0.141,

K̂VA0 ≃ 0.407,
K̂VA0

ĤVA0

≃ 2.881.
(39)

As could be expected from Remark 2.13, there is ultimately less risk (as assessed by
economic capital and KVA, cf. (13) and Figure 3) with the delta hedge than with
the static, aka delta-vega, hedge.

In the frictionless case f = 0, we obtain by the same methodology

ĤVA0 = ĤVA·
0 ≃ 0.095,

K̂VA0 ≃ 0.433,
K̂VA0

ĤVA0

≃ 4.550.
(40)

In view of (39) (see also Figure 3), the dynamic hedging frictions happen to be
risk-reducing in this case, meaning that the components −pnlmtm + HVAmtm −
HVAmtm

0 = −pnl· + HVA· − HVA·
0 and f + HVAf − HVAf

0 of (28) are negatively
correlated.

5. Conclusion.
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Figure 3. Plot of the deterministic maps t 7→ ẼC(t) [top left]

and t 7→ K̃VA(t) [top right] corresponding to the static hedging
case (33). Plots of mean (in green) and quantiles at levels 10%

and 90% (in blue) and 2.5% and 97.5% (in red) of ÊC(t, S̃t) in
the delta hedging case without friction [Middle left] and in the
delta hedging case with friction [bottom left]. Plots of mean (in
green) and quantiles at levels 10% and 90% (in blue) and 2.5%

and 97.5% (in red) of K̂VA(t, S̃t) in the delta hedging case without
friction [Middle right] and in the delta hedging case with friction
[bottom right].

Executive summary (encompassing credit): A global valuation frame-
work. In the model-risk-free and frictionless XVA setup of [2] and [18], pnlmtm is a

zero-valued martingale and f = 0, hence HVAmtm = HVAf = 0. In this paper, the
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loss process (41) also incorporates model risk (in pnlmtm) and market frictions (in
f), This results in nontrivial first and second layers HVA. The process HVAmtm can
be seen as the bridge between a global fair valuation model and the local models
used by the different desks of the bank. The reserve for model risk and transac-
tion costs is then risk-adjusted by the third HVA layer, namely a KVA component,
where the KVA is defined from (28) (or more generally (41) below) by (29)-(30).

Accounting methods are also models in the sense of SR-11-7 (cf. https://www.
federalreserve.gov/supervisionreg/srletters/sr1107.htm) because they produce num-
bers, are based on assumptions, and have an impact on strategies. If they are mis-
aligned with economics, they cause a misalignement of interests between executives
and shareholders. Hence, model risk is a concept that does not apply only to pricing
models, but should be extended to accounting principles for dealer banks, including
the specification of their CVA and FVA metrics (as these are liabilities to the bank,
see [18, Section 1] and [2, Figure 1]). From this model risk perspective, the CVA and
FVA should be viewed as two additional “giant trades” of the bank with associated
raw pnlcva and pnlfva, deserving first layer HVA contributions in the same way
as individual deals “·” in the paper. Denoting these contributions by HVAcva and
HVAfva, the first layer HVA becomes HVAmtm + HVAcva + HVAfva. The overall
loss trading process of the bank accounting for market, credit, and funding risks is
given by the martingale L, defined, for all t ≥ 0, by (compare with (28))

Lt = −pnlmtm
t +HVAmtm

t −HVAmtm
0 − pnlcvat +HVAcva

t −HVAcva
0

− pnlfvat +HVAfva
t −HVAfva

0 + ft +HVAf
t −HVAf

0 .
(41)

In this defaultable extension of the theory, the probability measure under which all
equations are stated becomes the bank survival probability measure associated with
R in the sense of [2, Section 4] (see also [18, Section B] for a practically equivalent
reduction of filtration viewpoint). In addition, similarly to the extensions mentioned
in the first two items of Remark 2.8, for each deal “·”, the associated raw pnl process
pnl· should be stopped at τ ·d, the positive default time of the counterparty of the
deal (the default of the bank itself being absorbed in the above-mentioned switch
to its survival measure).

Regarding its KVA computations, a bank could also be subject to model risk: To
enhance its competitiveness in the short term, a bank might be tempted to use a
model understating the risk and economic capital of the bank. A sound practice in
this regard is to combine different, equally valid (realistic and co-calibrated) models
for simulating the set of trajectories underlying the economic capital and KVA
computations [4, Section 4.3]. Such a Bayesian KVA approach typically fattens the
tails of the simulated distributions and avoids under-stated risk estimates.
Take-away message: Bad models should be banned not managed. In this
paper, we revisit [13] and [14]’s notion of hedging valuation adjustment (HVA) in
the direction of model risk. The fact evidenced by Example 2.13 that vega hedging
may actually increase model risk illustrates well that model risk cannot be hedged.
It can only be provisioned against, or, preferably, compressed by improving the qual-
ity of the models used by traders. In any case, a provision for model risk should
be risk-adjusted. But, as the paper illustrates, a risk-adjusted reserve would be
much greater than the “HVA uptick” (price difference) currently used in banks, by
a factor 3 to 5 in our experiments (cf. Remark 2.10 and (39)-(40)), and it could be
even more if one accounted for the price impact of a liquidation in extreme market
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conditions (cf. https://www.risk.net/derivatives/6556166/remembering-the-range-
accrual-bloodbath effects already mentioned in Remark 2.11). Risk-adjusted HVA
computations are also very demanding. In particular, beyond analytical toy exam-
ples such as that of Section 4.3 (and already in the case of Section 4.4), HVA risk-
adjusted KVA computations require dynamic recalibration in a simulation setup for
assessing the hedging ratios used by the traders at future time points as well as the
time of explosion of the trader’s strategy (time of model switch τ ·s). Hence, from
the computational workload viewpoint too, the best practice would be that banks
only rely on high-quality models so that such computations are simply not needed.

In conclusion, the orders of magnitude of the corrections that would be required
for duly compensating model risk (accounting not only for misvaluation but also
for the associated mishedge), as well as the corresponding computational burden
for a precise assessment of the latter, suggest that bad models should not so much
be managed via reserves, as excluded altogether.

Appendix A. Pricing equations in the jump-to-ruin model. In this section,
we provide pricing analytics in the jr model (7) for S, with jump-to-ruin time (first
jump time of N) θ. We also consider the auxiliary Black-Scholes model

dS̃t = λS̃tdt+ σS̃tdWt, (42)

starting from S̃0 = S0, where λ and σ (omitted in the notation for d± below when

clear from the context) were introduced after (7). Hence, St = 1{Nt=0}S̃t, t ≥ 0.
Given the maturity T > 0 and strike K > 0 of an option, let, for every pricing time
t and stock value S,

d±(t, S;λ, σ) =
ln( S

K ) + λ(T − t)

σ
√
T − t

± 1

2
σ
√
T − t. (43)

We first consider the pricing of a vanilla call option.

Proposition A.1. The jr value process (1)-(9) of the call option with payoff (ST −
K)+ at time T can be represented as

Cjr
t = u(t, St)1[0,T ), t ∈ [0, T ],

where the pricing function u = u(t, S) := E
(
(ST − K)+

∣∣St = S
)
is the unique

classical solution with linear growth in S to the PDE
{

u(T, S) = (S −K)+, S ≥ 0

∂tu(t, S) + λS∂Su(t, S) +
σ2S2

2 ∂2
S2u(t, S)− λu(t, S) = 0, t < T, S ≥ 0.

(44)

For t < T ,

Cjr
t = StN (d+(t, St))−Ke−λ(T−t)N (d−(t, St)). (45)

Proof. We have ST = 1{θ>T}S̃T = 1{θ>T}S0 exp
(
σWT + (λ− σ2

2 )T
)
. Since (ST −

K)+ = 0 on θ ≤ T and ST = S̃T on θ > T , it follows that, on {t < θ},
Et

[
(ST −K)+

]
= Et

[
1{θ>T}(ST −K)+

]
= (46)

= Et

[
1{θ>T}(S̃T −K)+

]
= Et

[
e−λ(T−τ)(S̃T −K)+

]
,

by independence between W and N in (1). One recognizes the probabilistic ex-
pression for the time-t price of the vanilla call option in the auxiliary Black-Scholes
model (42), hence the proposition follows from standard Black-Scholes results. □
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We now consider the pricing of a put option in the jr model in two forms: either a
vanilla put with payoff (K−ST )

+, or a vulnerable put with payoff 1{θ>T}(K−ST )
+.

Proposition A.2. The jr value process (1) of the vanilla put can be represented
as

P jr
t = v(t, St)1[0,T ), t ∈ [0, T ], (47)

where the vanilla put pricing function v = v(t, S) := E
(
(K − ST )

+
∣∣St = S

)
is the

unique bounded classical solution to the PDE




v(T, S) = (K − S)+, S ≥ 0

∂tv(t, S) + λS∂Sv(t, S) +
σ2S2

2 ∂2
S2v(t, S)

−λv(t, S) + λK = 0, t < T, S ≥ 0.

(48)

For t < T ,

P jr
t = Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)). (49)

Proof. Taking the expectation in the decomposition ST −K = (ST −K)+ − (ST −
K)− yields the (model-free) call-put parity relationship

St −K = u(t, St)− v(t, St), t ≤ T, (50)

hence v = u − (S −K), from which the PDE characterization based on (48) for v
results from the PDE characterization based on (44) for u. Moreover, we deduce
from (45) that, for t < T ,

P jr
t = Cjr

t − (St −K) = St (N (d+(t, St))− 1)−K
(
e−λ(T−t)N (d−(t, St))− 1

)
= Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)),

which is (49). □

In accordance with (49), we have the following definition.

Definition A.1. For t < θ ∧ T , given the observed spot price St = S > 0, the
Black-Scholes implied volatility Σt = Σ(t, S) of the vanilla put in the jr model is
the unique solution Σ to

Ke−λ(T−t)N (−d−(t, S;λ, σ))− SN (−d+(t, S;λ, σ)) +K(1− e−λ(T−t))

= P bs(t, S; Σt) := KN (−d−(t, S; 0,Σt))− SN (−d+(t, S; 0,Σt)).
(51)

We also set Σ(t, 0) = 0.

Remark A.1. For S = 0, any Σ ≥ 0 solves (51): for any Σ, d± = −∞ as ln( 0
K ) =

−∞, so KN (−d−)− SN (−d+) = K − S = K (for S = 0).

Proposition A.3. The value process (1) of the vulnerable put is given by

Qjr
t = 1t<θ∧T

(
P jr
t − (1− e−λ(T−t))K

)
=

1t<θ∧T

(
Ke−λ(T−t)N

(
− d−(t, St)

)
− StN

(
− d+(t, St)

))
.

(52)

For t < T ,

P jr
t −Qjr

t = 1t<θK(1− e−λ(T−t)) + 1t≥θK. (53)
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Proof. We have

1{θ>T}(ST −K) = 1{θ>T}
(
(ST −K)+ − (ST −K)−

)
,

which in jr reduces to

ST − 1{θ>T}K = (ST −K)+ − 1{θ>T}(ST −K)−.

By taking time-t conditional expectations, we have, on {t < θ ∧ T}, that St −
Ke−λ(T−t) = Cjr

t −Qjr
t , which yields

Qjr
t = Cjr

t − St +Ke−λ(T−t),

out of which (still on {t < θ ∧ T}) the first identity in (52) follows from (50) and
the second identity in turn follows from (49). Besides, on {t ≥ θ}, we have Qjr = 0
and P jr = K, whereas on {t ≥ T} we have Qjr = 0, which completes the proof of
(52) and (53). □

Proposition A.4. Setting w(t, S) = v(t, S) − K(1 − e−λ(T−t)) (see Proposition
A.2 and (53)), the vulnerable put is replicable on [0, θ ∧ T ] in the jr model (in the
absence of model risk and hedging frictions) by the dynamic strategy ζ in S and η
in the vanilla put given by

ζt = −
N
(
− d+(t, St)

)

1−N
(
− d−(t, St)

) , ηt = −
N
(
− d−(t, St)

)

1−N
(
− d−(t, St)

) , t < τs ∧ T, (54)

and the number of constant riskless assets deduced from the budget condition w(t, St)
on the strategy.

Proof. The profit-and-loss associated with the hedging strategy ζ in S and η in
the vanilla put, both assumed left-limits of càdlàg processes, evolves following (the
position being assumed to be unwound at θ)

dpnlt = 1{t≤θ}(dQ
jr
t − ζtdSt − ηtdP

jr
t )

(with pnl0 = 0). Itô formulas with (elementary) jump exploiting the results of
Propositions A.2 and A.3 yield (cf. (7))

dpnlt = 1{t≤θ}(αtdWt + βtdMt),

where

αt = σSt

(
∂Sw(t, St−)− ζt − ηt∂Sv(t, St−)

)
,

βt = −w(t, St−) + ζtSt− + ηt
(
v(t, St−)−K

)
.

Hence, the replication condition α = β = 0 reduces to the linear systems

∂Sw(t, St−)− ζt − ηt∂Sv(t, St−) = −w(t, St−) + ζtSt− + ηt
(
v(t, St−)−K

)
= 0 (55)

in (ζt, ηt) (one system for each t < τs ∧ T ). Using (49) for the first line and (52)
and (53) for the second line, one verifies that (54) solves (55). □

Appendix B. Proof of Theorem 3.5.

Lemma B.1. Under Assumptions 3.2 and 3.6, there exists C3 > 0 such that, for
all h > 0 and u ∈ {∂lq⋆, (∂x(∂lq⋆)σ; 1 ≤ l ≤ d},

sup
0<t−s<h

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2 ≤ C3h

α.
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Proof. Since 1−
∏L

ȷ=1 1{νȷ
t=νȷ

s} ≤
∑L

ȷ=1(ν
ȷ
t − νȷs), we have, for some constant C ≥ 0

varying from line to line,

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2

≤
√
2E
[
|u(t,Xt, Jt)− u(t,Xt, Js)|2

] 1
2

+
√
2E
[
|u(t,Xt, Js)− u(s,Xs, Js)|2

] 1
2

≤ C


E

[
|u(t,Xt, Jt)− u(t,Xt, Js)|2

L∑

ȷ=1

(νȷt − νȷs)

] 1
2

+ (t− s)α + (t− s)
1
2




≤ C

(
L∑

ȷ=1

E
[∫ t

s

λȷ
rdr

] 1
2

+ (t− s)α

)
≤ C

(
L
√
Λ(t− s) + (t− s)α

)
≤ C3h

α,

where we used equation (20) and the bound on the maps λȷ. □

Coming to the proof of the theorem, we have, for t = 0 for notational simplicity,

∣∣∣HVAh
0 −HVAf

0

∣∣∣ = ∣∣∣∣∣E
[

n∑
i=1

φh
ih

]
− E

[∫ T⋆

0

φtdt

]∣∣∣∣∣
=

∣∣∣∣∣
√
h

2
E

[
n∑

i=1

X⊤
ihk(δaih)

abs

]
− 1√

2π
E

[
n∑

i=1

∫ ih

(i−1)h

X⊤
t k(Γσ)abs(t,Xt)dt

]∣∣∣∣∣
≤

d∑
l=1

kl

∣∣∣∣∣
√
h

2
E

[
n∑

i=1

Xl
ih

∣∣∣al
ih − al

(i−1)h

∣∣∣]− 1√
2π

E

[
n∑

i=1

∫ ih

(i−1)h

Xl
t|∂x(∂lq

⋆)σ|(t,Xt)dt

]∣∣∣∣∣
= h

d∑
l=1

n∑
i=1

kl

∣∣∣∣∣E
[

1

2
√
h
Xl

ih

∣∣∣al
ih − al

(i−1)h

∣∣∣− 1

h
√
2π

∫ ih

(i−1)h

Xl
t|∂x(∂lq

⋆)σ|(t,Xt)dt

]∣∣∣∣∣
≤ T ⋆

d∑
l=1

kl sup
0≤s<t≤T⋆,t−s=h

∣∣∣∣E [
1

2
√
h
Xl

t

∣∣∣al
t − al

s

∣∣∣− 1

h
√
2π

∫ t

s

Xl
u|∂x(∂lq

⋆)σ|(u,Xu)du

]∣∣∣∣ .
We fix 1 ≤ l ≤ d and we show that

sup
t−s=h

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣alt − als
∣∣− 1

h
√
2π

∫ t

s

X l
u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣→h→0 0. (56)

In fact, for all 0 ≤ s < t ≤ T ⋆ such that t− s = h,

∣∣∣∣E [
1

2
√
h
Xl

t

∣∣∣al
t − al

s

∣∣∣− 1

h
√
2π

∫ t

s

Xl
u|∂x(∂lq

⋆)σ|(u,Xu)du

]∣∣∣∣
≤ 1

2
√
h

∣∣∣E [
(Xl

t −Xl
s)

∣∣∣al
t − al

s

∣∣∣]∣∣∣
+

1

2
√
h

∣∣∣E [
Xl

s

(∣∣∣al
t − al

s

∣∣∣− |∂x(∂lq
⋆)σ(s,Xs)(Wt −Ws)|

)]∣∣∣
+

∣∣∣∣E [
1

2
√
h
Xl

s |∂x(∂lq
⋆)σ(s,Xs)(Wt −Ws)| −

1

h
√
2π

∫ t

s

Xl
u|∂x(∂lq

⋆)σ|(u,Xu)du

]∣∣∣∣
(57)
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Regarding the first term on the r.h.s. of (57), we have by Assumption 3.2 and
Lemma B.1,

1

2
√
h

∣∣E
[(
X l

t −X l
s

) ∣∣alt − als
∣∣]∣∣ ≤ 1

2
√
h
E
[∣∣X l

t −X l
s

∣∣2
] 1

2 E
[∣∣alt − als

∣∣2
] 1

2

≤ C1

2
h−

1
2+

1
2+α =

C1

2
hα.

(58)

We now consider the second term on the r.h.s. of (57). With δ∂lq
⋆(t, x, j, k) :=

∂lq
⋆(t, x, j)−∂lq

⋆(t, x, k) and Cl defined in (21), recalling that |δ∂lq⋆(t, x, j, k)| ≤ C2

by Assumption 3.6, we compute by Itô’s formula

1

2
√
h

∣∣∣E [
Xl

s

(∣∣∣al
t − al

s

∣∣∣− |∂x(∂lq
⋆)σ(s,Xs)(Wt −Ws)|

)]∣∣∣
≤ 1

2
√
h
E
[
Xl

s

∫ t

s

|(∂t + F)∂lq
⋆(u,Xu)| du

]
+

L∑
ȷ=1

1

2
√
h
E
[
Xl

s

∣∣∣∣∫ t

s

δ∂lq
⋆(u,Xu, k)dν

k
u

∣∣∣∣]

+
1

2
√
h
E
[
Xl

s

∣∣∣∣∫ t

s

(∂x(∂lq
⋆)σ(u,Xu)− ∂x(∂lq

⋆)σ(s,Xs)) dWu

∣∣∣∣]
≤ Cl

2
E
[∫ t

s

|(∂t + F)∂lq
⋆(u,Xu)|2 du

] 1
2

+
C2

2
√
h

L∑
ȷ=1

E
[
Xl

s(ν
ȷ
t − νȷ

s)
]

+
Cl

2
√
h
E
[∫ t

s

|∂x(∂lq
⋆)σ(u,Xu)− ∂x(∂lq

⋆)σ(s,Xs)|2 du
] 1

2

≤ ClC2

2

√
h +

ClC2ΛL
√
h

2
+

ClC3

2
hα ≤ Chα,

(59)

where we used

E
[
X l

s(ν
ȷ
t − νȷs)

]
= E

[
X l

sEs [ν
ȷ
t − νȷs]

]
= E

[
X l

s

∫ t

s

λȷ
udu

]

≤ E
[(
X l

s

)2] 1
2 E

[(∫ t

s

λȷ
udu

)2
] 1

2

≤ ClΛh,

E
[∫ t

s

|(∂t + F)∂lq
⋆(u,Xu)|2 du

] 1
2

=

(∫ t

s

E
[
|(∂t + F)∂lq

⋆(u,Xu)|2
]
du

) 1
2

≤
√
h sup

u∈[0,T⋆]

E
[
|(∂t + F)∂lq

⋆(u,Xu)|2
] 1

2 ≤ C2

√
h,

and Lemma B.1.

We finally deal with the last term on the r.h.s. of (57). As ∂x(∂lq
⋆)σ(s,Xs) (Wt −Ws)

has, conditionally on Fs, the law N
(
0,h |∂x(∂lq⋆)σ(s,Xs)|2

)
, we have

1

2
√
h
E
[
X l

s |∂x(∂lq⋆)σ(s,Xs) (Wt −Ws)|
]
=

1√
2π

E
[
X l

s |∂x(∂lq⋆)σ(s,Xs)|
]
.



HANDLING MODEL RISK WITH XVAS 515

We then obtain for this last term
∣∣∣∣E
[

1

2
√
h
X l

s |∂x(∂lq⋆)σ(s,Xs) (Wt −Ws)| −
1

h
√
2π

∫ t

s

X l
u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣

=
1√
2π

∣∣∣∣E
[
X l

s |∂x(∂lq⋆)σ(s,Xs)| −
1

h

∫ t

s

X l
u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣

≤ 1√
2π

∣∣∣∣E
[
X l

s |∂x(∂lq⋆)σ(s,Xs)| −
1

h

∫ t

s

X l
u|∂x(∂lq⋆)σ|(u,Xu, Js)du

]∣∣∣∣

+
1

h
√
2π

∣∣∣∣E
[∫ t

s

X l
u (|∂x(∂lq⋆)σ|(u,Xu, Js)− |∂x(∂lq⋆)σ|(u,Xu, Ju)) du

]∣∣∣∣

≤ 1√
2π

∣∣E
[
X l

s|∂x(∂lq⋆)σ(s,Xs)| −X l
r|∂x(∂lq⋆)σ(r,Xr, Js)|

]∣∣

+
Cl

√
h2π

E

[∫ t

s

(∂x(∂lq
⋆)σ(u,Xu, Js)− ∂x(∂lq

⋆)σ(u,Xu, Ju))
2
du

L∑

ȷ=1

(νȷt − νȷs)

] 1
2

,

where the (random) r ∈ (s, t) in the next-to-last line is obtained via the mean value
theorem. We have, for a constant C changing from term to term,∣∣∣E [

Xl
s|∂x(∂lq

⋆)σ(s,Xs)| −Xl
r|∂x(∂lq

⋆)σ(r,Xr, Js)|
]∣∣∣

≤ E
[
|Xl

s −Xl
r||∂x(∂lq

⋆)σ(s,Xs)|
]
+ E

[
Xl

r|∂x(∂lq
⋆)σ(s,Xs)| − ∂x(∂lq

⋆)σ(r,Xr, Js)|
]

≤ C1h
1
2 sup

t∈[0,T⋆]

E
[
|∂x(∂lq

⋆)σ(t,Xt)|2
] 1

2 + ChαE
[
Xl

r

]
+ CE

[
Xl

r|Xr −Xs|
]
≤ Chα,

(60)

as

sup
t∈[0,T⋆]

E
[
|∂x(∂lq⋆)σ(t,Xt)|2

] 1
2 ≤ C(T ⋆)α + Cl + C max

1≤ȷ≤L
|∂x(∂lq⋆)σ(0, 0, k)| < ∞.

Finally,

Cl

√
h2π

E

[∫ t

s

(∂x(∂lq
⋆)σ(u,Xu, Js)− ∂x(∂lq

⋆)σ(u,Xu, Ju))
2
du

L∑

ȷ=1

(νȷt − νȷs)

] 1
2

ClC2√
2π

E

[
L∑

ȷ=1

∫ t

s

λȷ
udu

] 1
2

≤ ClC2√
2π

√
LΛh.

(61)

Using (58)-(59)-(60)-(61), we obtain, for some constant C ≥ 0,

sup
t−s=h

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣alt − als
∣∣− 1

h
√
2π

∫ t

s

X l
u|∂x(∂lq⋆)σ|(u,Xu)doe

]∣∣∣∣ ≤ Chα,

which proves (56) and therefore the theorem.

Appendix C. Neural nets regression and quantile regressions for the
pathwise HVAf , EC, and KVA of section 4.4. The setup and notation are
that of Section 4.4.
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HVAf computations. The function H̃VA
f
in (38) is such that H̃VA

f
(T, ·) = 0,

H̃VA
f
(t, 0) = 0 for all t, and, for u < t and S ∈ (0,∞),

H̃VA
f
(u, S) = E

[
(ft − fu) + H̃VA

f
(t, St)

∣∣∣∣Su = S

]

= E
[
(ft − fu) + H̃VA

f
(t, St)1{St>0}

∣∣∣∣Su = S

]
,

(62)

for f as per (27). Accordingly, we approximate on (0,∞) the functions H̃VA
f
(ti, ·)

for ti := i T
10 as follows: Set ĤVA

f
(t10, ·) = 0 and assume that we have already

trained neural networks ĤVA
f
(tk, ·), i+ 1 ≤ k < 10. Based on sampled data

(X,Y ) =

(
S̃m
ti , (fti+1

− fti)
m + ĤVA

f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0}

)

1≤m≤M

,

where each Sm
ti+1

is obtained from (7) with initial condition Sm
ti = S̃m

ti > 0 simulated

from (42), in view of (62) and of the least-squares characterization of conditional

expectation (in square integrable cases), we seek for ĤVA
f
(ti, ·) in

argminu∈NN

M∑

m=1

(
ĤVA

f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0} +
(
fti+1

− fti
)m − u(S̃m

ti )

)2

, (63)

where NN denotes the set of feedforward neural networks with three hidden layers
of 10 neurons each and ReLU activation functions.

We then obtain ĤVA
f
(0, S0)= 0.04613 from ft1 + ĤVA

f
(t1, St1) as a sample

mean. The corresponding standard deviation, 95% confidence interval, and relative

error at 95% are σ̂f ≃ 6× 10−3, [0.04601, 0.04624], and 1.96σ̂f

ĤVA
f

0

√
M

≃ 0.25%, respec-

tively, where σ̂f denotes the empirical standard deviation of f1 + ĤVA
f
(t1, St1).

EC computations. Next, we approximate ẼC(t, ·) on (0,∞) by the two-stage
scheme of [6, Section 4.3] for each t = ti, 1 ≤ i < 10. Recall t′ = (t+1)∧T . We first

train a neural network V̂aR(t, ·) approximating ṼaR(t, ·) based on sampled data

(X,Y ) =
(
S̃m
t , (Lt′ − Lt)

m
)
1≤m≤M

and on the pinball-type loss (y−u(x))++(1−

α)u(x), i.e. we seek for V̂aR(t, ·) in

argminu∈NN
1

M

M∑

m=1

(
(Lt′ − Lt)

m − u(S̃m
t )
)+

+ (1− α)u(S̃m
t ).

Note from (28) that, for t = ti, sampling Lt′ − Lt uses the already trained neural

network ĤVA
f
(ti+1, ·). For t = 1yr (where the approximation should be the worst

due to error accumulated on H̃VAf from dynamic programming), the Monte Carlo

estimate of [6, (4.10)] for the distance in p-values between the estimate V̂aR(t, St)
and the targeted (unknown) VaRt (Lt′ − Lt) is less than 3.6× 10−3 ≤ 1−α = 10−2

with 95% probability.
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We then train neural networks ÊC(t, ·) approximating ẼC(t, ·) on (0,∞) at times

t = ti based on sampled data (X,Y ) =
(
S̃m
t , (Lt′ − Lt)

m
)
1≤m≤M

and on the loss

(
(1− α)−1(y − V̂aR(t, x))+ + V̂aR(t, x)− u(x)

)2
,

i.e. we seek for ÊC(t, ·) in

argminu∈NN
1

M

M∑

m=1

(
(1− α)−1

(
(Lt′ − Lt)

m − V̂aR(Sm
t )
)+

+V̂aR(Sm
t )−u(x)

)2

.

For t = 1yr, the Monte Carlo estimate of [6, (4.8)] for the L2-norm of the difference

between the estimate ÊC(t, S̃t) and the targeted (unknown) ẼC(t, S̃t) is smaller
than 0.067 (itself significantly less then the orders of magnitude of EC visible on
the left panels of Figure 3) with probability 95%.

We also compute V̂aR(0, S0) = 0.0120 (which is needed for ÊC(0, S0) below) as an
empirical (unconditional) value-at-risk. The corresponding 95% confidence interval

and relative error at 95% are [0.0117, 0.0123] and 1.96

V̂aR(0,S0)d̂(V̂aR(0,S0))

√
α(1−α)

M ≃

2.3%, where d̂ denotes the empirical density of Lt1 − Lt0 . Finally we compute

ÊC(0, S0) = 0.493 using the recursive algorithm of [16, Eqn (4)]. Using the central
limit theorem for expected shortfalls derived in [16, Theorem 1.3], a 95% confidence

interval is [0.451, 0.534], and the relative error at 95% is
√

bM
2

1.96σ̂s

(1−α)ÊC(0,S0)
≃ 0.08,

where σ̂s denotes the empirical standard deviation of (L1−L0)1{(L1−L0)>V̂aR(0,S0)}
and bM is defined in [16, Assumption Han,bn ].

KVA computations. Lastly, we approximate K̃VA(t, ·) at times t = ti on (0,∞)

for i decreasing from 10 to 1 by neural networks K̂VA(ti, ·) based on the following
dynamic programming equation for 0 ≤ i < 10:

KVAti = Eti

[
KVAti+1 + h

∫ ti+1

ti

(ECu −KVAu)
+
du

]

≈ Eti

[
KVAti+1

+ h(ti+1 − ti)
(
ECti+1

−KVAti+1

)+]
.

Starting from K̂VA(tn, ·) = 0 and having already trained the K̂VA(tj , ·), j > i > 0,

we train K̂VA(ti, ·) based on the sampled data

(X,Y ) =

(
S̃m
ti , h(ti+1 − ti)

(
ÊC(ti+1, S

m
ti+1

)− K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}
)+

+K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}
)
1≤m≤M

and on the quadratic loss (y − u(x))2. We then compute K̂VA(0, S0) = 0.407 from

r(t1 − t0)(ÊC(t1, St1) − K̂VA(t1, St1)1{St1>0}) + K̂VA(t1, St1) as a sample mean.

The corresponding standard deviation, 95% confidence interval, and relative error

at 95% are σ̂kva ≃ 6 × 10−2, [0.4056, 0.4082], and 1.96σ̂kva

K̂VA0

√
M

≃ 0.0028, respectively,

where σ̂kva denotes the empirical standard deviation of r(t1 − t0)(ÊC(t1, St1) −
K̂VA(t1, St1)1{St1

>0}) + K̂VA(t1, St1).
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